

Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа с. Тростянка Балашовского района Саратовской области»

Принята на заседании педагогического совета Протокол № 1 от 30 августа 2024 г.

Утверждаю: И.о. директора школы ______ Л.Б. Шалатова Приказ № 204/4 от 30 августа 2024 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА Технической направленности

«Основы робототехники»

Возраст обучающихся: 6-12 лет

Форма обучения: очная

Срок реализации: 36 часов

Составитель: Приходько Алиса Андреевна Педагог дополнительного образования МОУ СОШ с. Тростянка

Пояснительная записка

Направленность - техническая, уровень - базовый.

Программа разработана в соответствии с:

- Федеральным законом «Об образовании Российской Федерации» (от 29.12.2012 г. № 273 -Ф3);
- Концепцией развития дополнительного образования, утвержденной распоряжением Правительства Российской Федерации от 31 марта 2022 г. №678-р;
- СанПиН 2.4.3648-20 "Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»;
- Приказом Министерства образования и науки РФ от 9 января 2014 г. № 2 «Об утверждении Порядка применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ»;
- Приказом Министерства Просвещения РФ от 09.11.2018 г. № 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам».

Актуальность программы

Особенностью федеральных государственных образовательных стандартов общего образования является их деятельностный характер, который ставит главной задачей развитие личности ученика. Поставленная задача требует перехода к новой системно-деятельностной образовательной парадигме, которая, в свою очередь, связана с принципиальными изменениями деятельности учителя. Деятельность выступает как внешнее условие развития у ребенка познавательных процессов. Чтобы ребенок развивался, необходимо организовать его деятельность. Такую стратегию обучения легко реализовать в образовательной среде LEGO.

Отличительная особенность программы

LEGO Education — это конструкторский набор, который дает возможность создавать и управлять собственными механизмами LEGO. Этот набор вызывает интерес у учащихся и вдохновляет их на совместное обсуждение реальных задач и поиск творческого решения. Используя набор моторов и строительных элементов LEGO, можно воплотить идеи в жизнь, построив и протестировав механизм. Использование конструктора при изучении физики и технологии делает процесс обучения увлекательным, наглядным, повышает мотивацию к решению сложных задач. Используя, конструкторы LEGO, ученики получают возможность мыслить, как настоящие ученые и инженеры. Наборы LEGO Education обладают широчайшим учебным потенциалом и могут быть использованы на естественнонаучных предметах для повышения эффективности учебного процесса: технология и проектирование — исследование новейших технологических решений и технологий с помощью создания их аналогов в виде рабочих моделей, изучение ключевых принципов проектирования, прототипирования и моделирования.

Адресат программы

Программа предназначена для учащихся в возрасте 6-12 лет.

Мышление у детей в возрасте 6-12 лет отличается наглядно-образным характером, неотделимо от восприятия конкретных особенностей изучаемых явлений, тесно связано с деятельностью воображения. Дети пока с трудом усваивают понятия, отличающиеся большой абстрактностью, так как кроме словесного выражения они не связаны с конкретной действительностью. И причина этого, главным образом, в недостаточности знаний об общих закономерностях природы и общества.

Форма обучения: очная.

Объем и срок освоения программы: программа рассчитана на 1 год обучения, общее количество часов – 36.

Режим занятий: занятия проводятся 1 раз в неделю продолжительностью в 1 час.

Форма организации образовательного процесса: в группу принимаются все желающие.

Состав группы: постоянный. **Состав учащихся:** 10-20 человек.

Цель и задачи программы

Цель: развитие творческих и научно-технических компетенций обучающихся, воспитание коммуникативных качеств и целенаправленности личности через систему групповых занятий и самостоятельной деятельности воспитанников по созданию устройств, решающих поставленные задачи.

Задачи программы

Образовательные:

- обучить решению практических задач, используя набор технических и интеллектуальных умений на уровне свободного использования;
- расширить знания о науке и технике как способе рационально-практического освоения окружающего мира;
- формировать устойчивый интерес к робототехнике, способность воспринимать их исторические и общекультурные особенности.

Развивающие:

- развивать научно-технические способности (критический, конструктивистский и алгоритмический стили мышления, фантазию, зрительно-образную память, рациональное восприятие действительности);
 - развивать мелкую моторику, внимательность, аккуратность и изобретательность;
 - развивать пространственное воображение учащихся.

Воспитательные:

- способствовать развитию коммуникативной культуры;
- формировать навык работы в группе;
- способствовать созданию творческой атмосферы сотрудничества, обеспечивающей развитие личности, социализацию и эмоциональное благополучие каждого ребенка.

Планируемые результаты

Предметные:

- -умеют решать практические задачи, используя набор технических иинтеллектуальных умений на уровне свободного использования;
- имеют знания о науке и технике как способе рационально-практического освоения окружающего мира;
- –имеют интерес робототехнике, способны воспринимать их исторические и общекультурные особенности.

Метапредметные:

- -развиты научно-технические способности;
- -развита мелкая моторика, внимательность, аккуратность и изобретательность;
- развито пространственное воображение у учащихся.

Личностные:

- умеют адекватно воспринимать и передавать информацию, слушать и вступать в диалог;
- -умеют интегрироваться в группу сверстников и строить продуктивное взаимодействиеи сотрудничество со сверстниками и взрослыми, умеют учитывать позицию собеседника;
 - умеют принимать участие в творческом, созидательном процессе.

Содержание программы Учебный план

No	Тема	Количество часов			Формы
		Всего	Теория	Практика	аттестации
					(контроля)

1	Раздел 1 «Введение»	1	1	-	
1.1	История возникновения «LEGO»	0,5	0,5	-	Наблюдение, опрос
1.2	Конструктор и его детали	0,5	0,5	-	Наблюдение, опрос
2	Раздел 2 «Простые механизмы. Теоретическая механика»	8	2	6	
2.1	Простые механизмы и их применение.	3	1	2	Наблюдение, опрос
2.2	Механические передачи.	4	1	3	Наблюдение, опрос, анкетирование
2.3	Работа в программе Lego Digital Designer	1	-	1	Наблюдение, опрос
3	Раздел 3 «Силы и движение. Прикладная механика»	8	3	5	
3.1	Конструирование модели «Уборочная машина»	2	1	1	Наблюдение
3.2	Игра «Большая рыбалка»	2	1	1	Наблюдение
3.3	Свободное качение	1	-	1	Наблюдение
3.4	Конструирование модели «Механический молоток»	2	1	1	Наблюдение, анкетирование
3.5	Работа в программе Lego Digital Designer	1	-	1	Наблюдение, опрос
4	Раздел 4 «Средства измерения. Прикладная математика»	6	2	4	-
4.1	Конструирование модели «Измерительная тележка»	2	1	1	Наблюдение, опрос
4.2	Конструирование модели «Почтовые весы»	2	1	1	Наблюдение
4.3	Конструирование модели «Таймер»	1	-	1	Наблюдение, анкетирование
4.4	Работа в программе Lego Digital Designer	1	-	1	Наблюдение, опрос
5	Раздел 5 «Машины с электроприводом»	8	3	5	
5.1	Конструирование модели «Тягач»	2	1	1	Наблюдение
5.2	Конструирование модели «Гоночный автомобиль»	2	1	1	Наблюдение
5.2	Конструирование модели «Скороход»	1	-	1	Наблюдение
5.3	Конструирование модели «Робопёс»	2	1	1	Наблюдение, , анкетирование
5.4	Работа в программе Lego Digital Designer	1	-	1	Наблюдение, опрос
6	Раздел 6 «Индивидуальная работа над проектами»	5	-	5	Наблюдение, опрос, выступление
	Bcero	36	11	15	-

Содержание учебного плана

Раздел 1 «Введение»

Тема: Вводное занятие

Теория: Введение в предмет. Презентация программы. Предназначение моделей. Рычаги, шестерни, блоки, колеса и оси. Названия и назначения деталей. Изучение типовых, соединений деталей. Конструкция. Основные свойства конструкции при ее построении. Ознакомление с принципами описания конструкции. Условные обозначения деталей конструктора. Выбор наиболее рационального способа описания.

Раздел 2 «Простые механизмы. Теоретическая механика»

Тема: Простые механизмы и их применение

Теория: Понятие о простых механизмах и их разновидностях. Рычаг и его применение. Конструирование рычажных механизмов. Рычаги: правило равновесия рычага. Основные определения. Правило равновесия рычага.

Практика: Построение сложных моделей по теме «Рычаги». Блоки, их виды. Применение блоков в технике. Построение сложных моделей по теме «Блоки». Понятие оси и колеса. Применение осей и колес в технике и быту. Рулевое управление. Велосипед и автомобиль.

Тема: Ременные и зубчатые передачи

Теория: Виды ременных передач; сопутствующая терминология. Применение и построение ременных передач в технике. Зубчатые передачи, их виды.

Практика: Применение зубчатых передач в технике. Зубчатые передачи. Различныевиды зубчатых колес. Зубчатые передачи под углом 90°. Реечная передача.

Тема: «Работа в программе Lego Digital Designer»

Практика: Проектирование различных моделей в приложении Lego Digital Designer на интерактивной панели.

Раздел 3 «Силы и движение. Прикладная механика»

Тема: Конструирование модели «Уборочная машина»

Практика: Установление взаимосвязей. Измерение расстояния. Сила трения, Использование механизмов - конических зубчатых передач, повышающих передач, шкивов. Самостоятельная творческая работа по теме «Использование повышающей передачи вуборочной машине».

Тема: Игра «Большая рыбалка»

Практика: Использование механизмов, облегчающих работу. Сборка модели - «удилище». Использование механизмов - блоки и рычаги. Самостоятельная творческая работа по теме «Использование блоков».

Тема: Свободное качение

Практика: Измерение расстояния, Калибровка шкал и считывание показаний. Энергия движения (кинетическая). Энергия в неподвижном состоянии (потенциальная) Трение и сопротивление воздуха. Сборка модели - измеритель. Использование механизмов - колеса и оси. Самостоятельная творческая работа по теме «Создание тележки с измерительной шкалой».

Тема: Конструирование модели «Механический молоток»

Практика: Трение и сила. Импульс. Количество движения, инерция. Сборка модели - механический молоток. Использование механизмов - рычаги, кулачки (эксцентрики). Изучение свойств материалов.

Самостоятельная творческая работа по теме «Вариации рычагов в механическом молотке».

Тема: «Работа в программе Lego Digital Designer»

Практика: Проектирование различных моделей в приложении Lego Digital Designer на интерактивной панели.

Раздел 4 «Средства измерения. Прикладная математика»

Тема: Конструирование модели «Измерительная тележка»

Теория: Измерение расстояния, калибровка и считывание расстояния.

Практика: Сборка модели «Измерительная тележка». Использование механизмов - передаточное отношение, понижающая передача. Самостоятельная творческая работа по теме

«Измерительная тележка с различными шкалами».

Тема: Конструирование модели «Почтовые весы»

Практика: Измерение массы, калибровка и считывание масс. Сборка модели - Почтовые весы. Использование механизмов - рычаги, шестерни.

Подведение итогов: самостоятельная творческая работа по теме «Вариации почтовых весов».

Тема: Конструирование модели «Таймер»

Практика: Измерение времени, трение, энергия, импульс. Сборка модели - Таймер. Использование механизмов - шестерни. Самостоятельная творческая работа по теме «Использование шатунов».

Тема: «Работа в программе Lego Digital Designer»

Практика: Проектирование различных моделей в приложении Lego Digital Designer на интерактивной панели.

Раздел 5 «Машины с электроприводом»

Тема: Конструирование модели «Тягач»

Практика: Колеса. Трение. Измерение расстояния, времени и силы. Зубчатые колеса (шестерни). Самостоятельная творческая работа по теме «Конструирование модели «Тягач».

Тема: Конструирование модели «Гоночный автомобиль»

Практика: Повторение тем: Зубчатые колеса, Рычаги, Колеса. Энергия. Трение. Измерение расстояния.

Самостоятельная творческая работа по теме «Конструирование модели «Гоночный автомобиль».

Тема: Конструирование модели «Скороход»

Практика: Повторение тем: Зубчатые колеса, Рычаги, Связи, Храповой механизм, Использование деталей и узлов. Сила. Трение. Измерение времени.

Самостоятельная творческая работа по теме «Конструирование модели «Скороход».

Тема: Конструирование модели «Робопёс»

Практика: Разработка механических игрушек. Рычаги и соединения. Блоки и зубчатые передачи. Использование деталей и узлов. Сила и энергия. Трение. Самостоятельная творческая работа по теме «Конструирование модели «Робопёс».

Тема: «Работа в программе Lego Digital Designer»

Практика: Проектирование различных моделей в приложении Lego Digital Designer на интерактивной панели.

Раздел 6 «Индивидуальная работа над проектами»

Практика: Темы для индивидуальных проектов:

«Катапульта»; «Ручная тележка»; «Лебёдка»; «Карусель»; «Наблюдательная вышка»; «Мост»; «Ралли по холмам»; «Волшебный замок»; «Подъемник»; «Почтовая штемпельная машина»; «Ручной миксер»; «Летучая мышь».

Формы аттестации и контроля

Контроль предметных результатов осуществляется двумя путями:

- 1. Практические занятия
- 2. Творческие проекты

При организации практических занятий и творческих проектов формируются малые группы, состоящие из 2-3 учащихся. Для каждой группы выделяется отдельное рабочее место, состоящее из чертежа и конструктора.

Преобладающей формой текущего контроля выступает проверка работоспособности механизма, проводимая по завершении каждого блока.

Итоговый контроль осуществляется в форме защиты творческих проектов. Процесс выполнения итоговой работы завершается процедурой презентации действующего механизма.

Контроль достижения личностных результатов проводится путем наблюдения за работой малых групп, способны ли они к кооперации, могут ли находить решение проблемы сообща, как отдельные члены группы отстаивают своё мнение.

Диагностирование метапредметных результатов достигается анализом выступления на защите творческой работы, а также различными анкетами и опросниками после завершения блока.

«Комплекс организационно-педагогических условий» Методическое обеспечение

При реализации программы используются различные методы обучения:

- познавательный (восприятие, осмысление и запоминание учащимися нового материала с привлечением наблюдения готовых примеров, моделирования, изучения иллюстраций, восприятия, анализа и обобщения материалов);
- метод проектов (при усвоении и творческом применении навыков и умений в процессе разработки собственных моделей);
- контрольный метод (при выявлении качества усвоения знаний, навыков и умений и их коррекция в процессе выполнения практических заданий);
- групповая работа (используется при совместной сборке моделей, а также при разработке проектов).

Формы организации образовательного процесса

Формы организации занятий - индивидуальная, групповая.

Педагогические технологии. Для реализации поставленных задач будут использоваться компоненты следующих технологий:

- здоровьесберегающие технологии;
- творческая деятельность;
- проектной деятельности;

Формы организации учебных занятий

- урок-консультация;
- практикум;
- урок-проект;
- урок проверки и коррекции знаний и умений.
- выставка.

Разработка каждого проекта реализуется в форме выполнения конструирования и программирования действующей модели для решения предложенной задачи.

Условия реализации программы

При реализации программы используются следующие учебные материалы:

- 1. Конструктор «Технология и физика» 9686 LEGO Education. Набор из 352 деталей предназначен для изучения основных законов механики и теории магнетизма.
- 2. Средства реализации ИКТ материалов на уроке (компьютер, проектор, экран, интерактивная панель, ноутбуки для учащихся).

Оценочные материалы

Презентация сопровождается демонстрацией действующей модели и представляет собой устное сообщение (на 5-7 мин.), включающее в себя следующую информацию:

- тема и обоснование актуальности проекта (максимум 20 баллов);
- -цель и задачи проектирования (максимум 20 баллов);
- $-\,$ этапы и краткая характеристика проектной деятельности на каждом из этапов (максимум $10\,$ баллов),
 - работоспособность представленной модели (максимум 50 баллов).

Всего за презентацию можно набрать 100 баллов.

Список литературы

- 1. Овсяницкая, Л.Ю. Курс программирования робота Lego Mindstorms EV3 в среде EV3: изд. второе, перераб. и допол. / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий. М.: «Перо», 2016. 296 с.;
- 2. Копосов Д. Г. Первый шаг в робототехнику. Практикум для 5-6 классов\ Д. Г. Копосов. М.: БИНОМ. Лаборатория знаний, 2012 292 с.

- 3. Блог-сообщество любителей роботов Лего с примерами программ [Электронный pecypc] /http://nnxt.blogspot.ru/2010/11/blog-post 21.html
 - 4. Робототехника для детей и родителей. С.А.Филиппов. СПб: Наука, 2010.
 - 5. Технология и физика. Книга для учителя. LEGO Educational Литература для учащихся:
 - Комарова Л.Г. Строим из LEGO «ЛИНКА-ПРЕСС» Москва, 2001.
 - Л.Г. Комарова Строим из LEGO (моделирование логических отношений и объектов реального мира средствами конструктора LEGO). М.: «ЛИНКА ПРЕСС», 2001.

Литература для родителей:

- Лусс Т.В. Формирование навыков конструктивно-игровой деятельности у детей с помощью LEGO. Москва: Гуманитарный издательский центр ВЛАДОС, 2003.
- Парамонова Л.А. Детское творческое конструирование Москва: Издательский дом «Карапуз», 1999.

Интернет ресурсы:

- http://www.int-edu.ru/
- http://www.lego.com/ru-ru/
- http://education.lego.com/ru-ru/preschool-and-school